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Photon entanglement, also known as “Spooky Action at a
Distance”,  is  a  promising  solution  to  quantum  cryptography
and  quantum  computing.  The  former  will  construct  a
cryptosystem  that  is  impossible  to  break,  and  the  latter  will
be  capable  of  solving  specific  problems  much  more  quickly
than  any  classical  computer.  An  ideal  entangled-photon
source  meeting  the  following  criteria  is  needed  for  eventu-
ally  the  practical  implementation  of  quantum  information
processing:  on-demand  generation[1],  high-fidelity[1],  ultrab-
right[2], high extraction efficiency[3], and high-temperature op-
eration[4].  For  practical  applications,  it  is  preferred  to  have  a
simple  approach  that  is  compatible  with  current  solid-state
technologies.  Self-organized  semiconductor  quantum  dots
(QDs)  represent  a  promising  option  as  an  on-demand  source
of  a  triggered  single-photon  and  entangled-photon  pairs,
through  the  radiative  recombination  of  excitons  and  biex-
citons[5, 6].

However,  the  photon  extraction  efficiency  is  extremely
low  because  of  the  refractive  indices  mismatch  between  the
bulk  matrixes  and  vacuum.  Moreover,  to  realize  entangled-
photon  emission,  it  is  necessary  to  grow  highly  symmetric
QDs  with  sufficiently  small  intrinsic  fine-structure  splitting
(FSS),  which  will  lead  to  excellent  entangled-photon  emis-
sion  via  the  biexciton-exciton  radiative  cascade[7].  Different
schemes have been proposed to overcome the photonextrac-
tion  issue.  A  double-micropillar  structure  and  QDs-in-
nanowires have been used for an entangled or single-photon
source;  however,  the  complexity  makes  them  difficult  for
wide applications[2, 8].

Recently, Ding et al. reported a high-efficiency, high-bright-
ness entangled-photon source from semiconductor QDs by us-
ing  a  broadband  optical  antenna  to  beam  photons[9].  QDs
with  very  small  FSS  were  grown  by  filling  in-situ  droplet
etched  nanoholes,  which  resulted  in  ultrahigh  in-plane  sym-
metry.  By  bringing  the  high  refractive  index  GaP  lens  with
anti-reflection coating close to the interface and accurately en-
gineering the gap between them by using polymethyl methac-
rylate  (PMMA)  as  the  intermediate  layer,  the  photons  travel-
ing  in  directions  above  the  critical  angle  are  beamed  effi-
ciently  into the lens,  as  shown in Fig.  1.  The enhancement  of
a factor of more than 100x is observed in the typical photolu-
minescence (PL) spectrum.

Their  design  can  be  used  to  improve  the  extraction  effi-
ciency  of  QDs  for  practical  applications  in  any  telecommuni-
cation  network.  The  broadband  antenna  is  also  applicable  to
different  optical-active  materials.  The  efficient  generation  of
entangled  photon  pairs  in  this  report  paves  the  way  for  the
development of various quantum technologies.
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Fig. 1. (Color online) The dielectric antenna consisting of a QD-contain-
ing membrane, PMMA spacer, and the GaP solid immersion lens. Repro-
duced with permission from Ref. [9]. Copyright 2018, Springer Nature.
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